

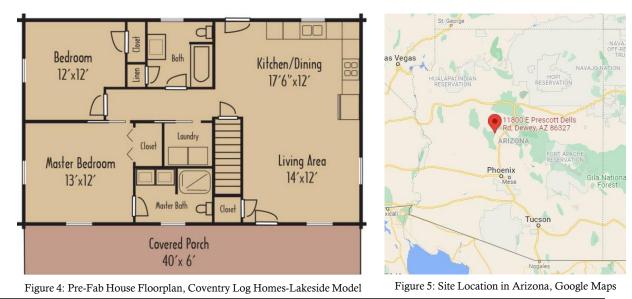
DEWEY ALTERNATIVE SEPTIC SYSTEM: PROPOSAL OF WORK

Gillian ArnoldRonald CarterHenri BozarthCooper Crenshaw

PROJECT INTRODUCTION

- What is being done
 - Design of an off-grid wastewater treatment system that allows for treated water to be recycled into irrigation use
- Client
 - Taylor Layland, P.E., Remal Consulting LLC
- Technical Advisor
 - Rand Decker, P.E., NAU Professor
- Grading Instructor
 - Wilbert Odem, P.E., NAU Professor

Figure 2:Example of a drip irrigation septic water disposal system, Parker's Septic Services



PROJECT BACKGROUND

- Site Details
 - 5-Acre Parcel of Land in Dewey-Humboldt, AZ
 - Single-Family Residence, 2 Bed, 2 Bath
- All Codes regarding Septic and similar systems fall under Yavapai County and AZDEQ

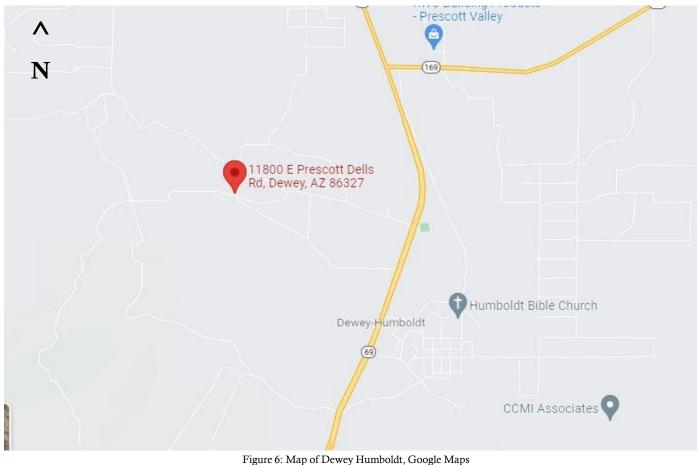


Figure 3: Map of 5-Acre Site, USGS GIS Survey

MAP OF DEWEY-HUMBOLDT

CONSTRAINTS AND CHALLENGES

- Constraints
 - Physical System Budget: \$35,000
 - Infiltration rates control system size
- Challenges
 - Inability to access site
 - Avoidance of contamination hazards
 - Strict regulations on treated wastewater

Figure 7: Example of soil conditions surrounding Dewey-Humboldt, Karyl Moore Real Estate

TECHNICAL APPROACH

- Technical Field Considerations
 - Hydrologic
 - Geotechnical
 - Wastewater Treatment Design
 - Septic System Design

Figure 8: Typical Septic Tank Installation, House Logic-Understanding Your Septic System

SCOPE OF SERVICES: MILESTONE 30%

- Task 1: Research and Preparation
 - Task 1.1: City and State Regulations
 - Task 1.1.1: ADEQ, Yavapai, Dewey-Humboldt Construction Regulations
 - Task 1.1.2: Operation Regulation
 - Task 1.2: Site Sampling Plan
 - Task 1.3: Laboratory Access Plan
 - Task 1.4: Technology Options Research
- Task 2: Site Investigation
 - Task 2.1: Surveying
 - Task 2.2: Site Soil Sampling
 - Task 2.3: On-Site Perc Test

- Task 3: Data Analysis
 - Task 3.1: Topographical Map
 - Task 3.2: Soil Composition Test
 - Task 3.3: Percolation Test

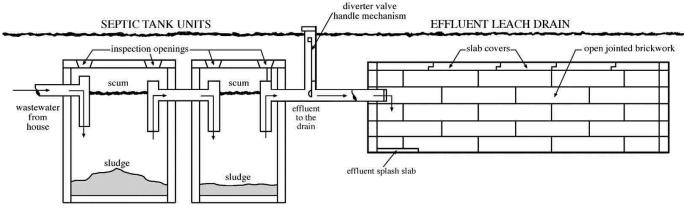


Figure 9: Data Gathering, Research Gate

SCOPE OF SERVICES: MILESTONE 60%

- Task 4: Design Solutions
 - Task 4.1: Design Alternatives
 - Task 4.1.1: Final Site Location
 - Task 4.1.2: Separate Design Configurations
 - Task 4.2: Design Decision Matrix
 - Task 4.3: Final Design Recommendation

SIDE VIEW SECTION (Note: only one leach drain shown)

Figure 10: Example of a simple septic system using an effluent leach drain and multiple septic tanks, Government of West Australia Department of Health

SCOPE OF SERVICES: MILESTONE 90%

- Task 5: Impact Analysis
 - Task 5.1 Economic Impacts
 - Task 5.2 Social Impacts
 - Task 5.3 Environmental Impacts
- Task 6: Installation and Operation
 - Task 6.1: Installation Plan Set
 - Task 6.2: Owners and Operators Manuals
- Task 7: Project Management
 - Task 7.1: Meeting Recording
 - Task 7.2: Schedule Management
 - Task 7.3: Resource Management

Figure 11: Septic Tank Inspection, The Durango Herald

SCOPE OF SERVICES: DELIVERABLES, EXCLUSIONS, AND COMPLETION

- Task 8: Deliverables
 - Task 8.1: 30% Submittal
 - Task 8.1.1: Milestone: Tasks 1-3
 - Task 8.1.2: 30% Report and Presentation
 - Task 8.2: 60% Submittal
 - Task 8.2.1: Milestone: Task 4
 - Task 8.2.2: 60% Report and Presentation
 - Task 8.3: 90% Submittal
 - Task 8.3.1: Milestone: Tasks 5-7
 - Task 8.3.2: 90% Report and Presentation

- Task 8.4: Final Submittal
 - Task 8.4.1: Final Report
 - Task 8.4.2: Website
 - Task 8.4.3: Presentation
- Exclusions
 - Hydrologic Analysis
 - Water Utilities Planning
 - System failure environmental impact

Figure 12: Job Completion, BBC

	Scope of Services	80 day	Fri 8/12/22	Thu 12/1/22	September 2022 October 2022 November 2022 1 19 24 29 3 8 13 28 3 8 13 18 23 28 2 7 12 17 22 27	2
1			Mon 8/29/22		·	T I
	Preparation					
2		2 days	Mon 8/29/22	Tue 8/30/22		
3	ADEQ, Yavapai,	2 days	Mon 8/29/22	Tue 8/30/22		
5	Dewey-Humboldt Construction	z uays	1011 8/23/22	100 8/ 50/ 22		
4	Regulations Operation Regulation	o 2 days	Wod 8/21/22	Thu 0/1/22	±	
5				1		
	Plan	5 2 00y5	1011 0/25/22	100 07 507 22	—	
6	Task 1.3: Laboratory Access Plan	14 days	Mon 8/29/22	Thu 9/15/22		
7	Task 2: Site Investigat	ic2 days	Fri 9/16/22	Mon 9/19/22	r i a n	
8	Task 2.1: Surveying	2 days	Fri 9/16/22	Mon 9/19/22		
9	Task 2.2: Site Soil Sampling	2 days	Fri 9/16/22	Mon 9/19/22		
10	Task 2.3: On-Site Perc	12 days	Fri 9/16/22	Mon 9/19/22		
11	Task 3: Data Analysis	7 days	Tue 9/20/22	Wed 9/28/22	ř	
12	Task 3.1: Topographical Map	6 days	Tue 9/20/22	Tue 9/27/22		
13		7 days	Tue 9/20/22	Wed 9/28/22		
14		Te5 days	Tue 9/20/22	Mon 9/26/22	* I	
15	Task 4: Design Solutio	n 9 days	Fri 9/16/22	Wed 9/28/22		
16	Design Alternatives	15 days	Thu 9/29/22	Wed 10/19/22		
17	Design Decision Matri	x 5 days	Thu 10/20/22	Wed 10/26/22	*	
18	Final Design Recommendation	7 days	Thu 10/27/22	Fri 11/4/22		
19	Task 5: Impact Analys	is 3 days	Thu 9/29/22	Mon 10/3/22		
20	Task 6: Installation and Operation	16 days	Mon 11/7/22	Mon 11/28/22	*	
2*		g€ 69 days	Mon 8/29/22	Thu 12/1/22		
25	Task 8: Deliverables	69 days	Mon 8/29/22	Thu 12/1/22	his second se	-
36	Exclusions	0 days	Thu 12/1/22	Thu 12/1/22		💊 12/1

COST PROPOSAL: STAFFING

- Staffing broken down into four positions
 - Senior Engineer (P.E. and Years of Tenure)
 - Research and Project Management
 - Engineer (P.E.)
 - Design and Calculations
 - Lab Technician (Lab Certified)
 - Soil Sampling and Data
 - Engineering Intern (EIT, CENE Graduate)
 - Assist Engineer and Senior Engineer

Figure 14: Staffing Time Breakdown, ABCC P

• Personnel Cost: \$70,488

Hours Su		Staffing Ti					
600		Total Hours	138	220	39	203	
Task #		Task	SENG	ENG	LAB	INT	
	1	Research and Preparation	20	6	0	(
1	1.1	City and State Regulations	4	0	0	(
1.1	1.1	ADEQ, Yavapai, Dewey-Humboldt Construction Reg	2				
		Operation Regulation	2				
1	1.2	Site Sampling Plan	4				
1	1.3	Laboratory Access Plan	2				
1	1.4	Technology Options Research	10	6			
	2	Site Investigation	0	10	23	2	
2	2.1	Surveying			13	1	
1	2.2	Site Soil Sampling		5	5	!	
2	2.3	On-Site Perc Test		5	5	5	
	3	Data Analysis	10	10	16	1	
3	3.1	Topographical Map	10	10			
3	3.2	Soil Composition Test			10	10	
3	3.3	Percolation Test			6	(
	4	Design Solutions	7	65	0	5	
4	_	Design Alternatives	2	60	0	4	
	_	Final Site Location	2				
4.1	1.2	Separate Design Configurations		60		4	
		Design Decision Matrix	5	5			
	_	Final Design Recommendation					
		Impact Analysis	15	15	0	1!	
	-	Economic	5	-	-		
	-	Social	5			1	
	_	Environmental	5				
	-	Installation and Operation	30				
f	-	Installation Plan Set	10			20	
	-	Owners and Operators Manual	20			20	
		Project Management	35				
-		Meeting Recording	5			<u> </u>	
	_	Schedule Management	15				
		Resource Management	15				
'		Deliverables	21		0	54	
5	-	30%	5	-		-	
		Milestones: Tasks 1-3		5			
		Report and Presentation	5	-		1	
		60%	5				
	-	Milestones: Tasks 4		- 15		1	
	_	Report and Presentation	5			1	
		90%	5				
		Milestones: Tasks 5-7		5		1	
-	-		-				
		Report and Presentation	5			1	
	-	Final Submittal	6 2				
	_	Final Report					
	-	Website	2			-	
8.4	1.3.	Presentation	2	2			

2

COST PROPOSAL: SUPPLIES AND TRAVEL

- Travel Expenses
 - Single trip to Dewey-Humboldt
 - Soil Sampling and Site Overview
 - Includes:
 - NAU Travel Reimbursement (158.2 Miles)
 - NAU Vehicle Rental

- Supplies and Equipment
 - Required materials for work
 - Physical: Pens, Paper, Printer Ink, Planset Paper, etc
 - Digital: AutoCAD
 - Rental: Soil Auger
- Cost: \$862

• Cost: \$135

Figure 15 : I-17 South of Flagstaff, Signals AZ $\,$

COST PROPOSAL: FINAL PROJECT COST

• Final Project Cost: \$75,459

		Total Cost	t A	Analy	alysis							
	Client:	Taylor Layland										
l Project Cost:	Company: ABCC Projects						Project					
159						\$			75,485.85			
139	Index	Item		te (\$/hr)	Hours	Subcost		Cost				
	1	1.0 Personnel						\$	70,488.00			
	2	Senior Engineer (SENG)	\$	240.00	138	\$	33,120.00					
	3	Engineer (ENG)	\$	137.00	220	\$	30,140.00					
	4	Lab Technician (LAB)	\$	50.00	39	\$	1,950.00					
	5	Engineering Intern (INT)	\$	26.00	203	\$	5,278.00					
	6											
	7	2.0 Travel						\$	135.40			
	8	NAU Travel Reimbursement (79.1 miles x 2	2	\$0.445	158.2	\$	70.40					
	9	Chevy Tahoe SSP, NAU Rental (1 day)				\$	65.00					
	10											
	11	3.0 Supplies						\$	862.45			
	12	Expendable Supplies				\$	250.96					
	13	Equipment Usage				\$	611.49					
	14											
	15	4.0 Subcontract						\$	4,000.00			
Figure 16: Total Cost Analysis, ABCC Projects	16	Installation Cost				\$	4,000.00					

REFERENCES

T. Layland, Interviewee, Professional Engineer. [Interview]. 26 January 2022.

EPA, "Septic Systems (Onsite/Decentralized Systems)," Environmental Protection Agency, [Online]. Available: https://www.epa.gov/septic. [Accessed 7 Feb 2022].

H. A.-H. a. M. Bino, "Effect of treated grey water reuse in irrigation on soil and plants," Desalination, vol. 256, no. 1-3, pp. 115-119, 2010.

W. S. D. o. Health, "Signs of Septic System Failure," Washington State Department of Health, 2022. [Online]. Available: https://doh.wa.gov/community-and-environment/wastewater-management/septic-system/signs-failure. [Accessed 26 January 2022].

ASTM, D6913/D6913M-17 Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis.

ASTM, D5856-15 Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter.

QUESTIONS?

Figure 1. https://coventryloghomes.com/floorplan/floorplan-tradesman-style-lakeside/

Figure 2. https://parkerssepticservices.com/solutions/drip-irrigation-disposal/

Figure 3. https://www.usgs.gov/the-national-map-data-delivery/gis-data-download

Figure 4. https://coventryloghomes.com/floorplan/floorplan-tradesman-style-lakeside/

Figure 5. https://www.google.com/maps

Figure 6. https://www.google.com/maps

Figure 7. https://karylmoore.com/listing-details/14240-e-meadow-road-dewey-humboldt-86327/1042420/

Figure 8. https://www.houselogic.com/organize-maintain/home-maintenance-tips/understanding-your-septic-system/

Figure 9. https://www.researchgate.net/figure/Example-of-data-collection-in-the-field-using-PDA-and-GPS-tools_fig3_274077288

Figure 10. https://www.healthywa.wa.gov.au/Articles/U_Z/Understanding-Septic-Tank-Systems

Figure 11. https://nsr.durangoherald.com/articles/275267

Figure 12. https://www.bbc.com/worklife/article/20130809-more-than-a-handshake

Figure 13. ABCC Projects Gantt Chart

Figure 14. ABCC Projects Staffing Breakdown Chart

Figure 15. https://www.signalsaz.com/articles/lane-restrictions-on-i-17-phoenix-to-flagstaff/

Figure 16. ABCC Total Cost Analysis